revised 11/23/09

Operations and Systems of Numbers (K-5)

	COUNTING NUMBERS 1, 2, 3, n	WHOLE NUMBERS counting numbers <i>n</i> and <i>0</i> 0, 1, 2, 3 m	FRACTIONS whole numbers <i>m</i> , <i>n</i> (<i>n</i> ≠ 0) and their divisions $\frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{m}{n}$	RATIONAL NUMBERS (positive) fractions $\frac{m}{n}$, their reflections $\frac{-m}{n}$ across 0 (negative fractions) $\frac{-m}{n} \cdots \frac{-3}{n}, \frac{-2}{n}, \frac{-1}{n}, \frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \cdots, \frac{m}{n}$
ADDITION a + b = c b added onto $agives you ca$ and b can be any two numbers	c > a [sums will always be greater]	if $b = 0$, then $c = a$ 0 is the identity element. if $b \neq 0$, then $c > a$, [sums will be greater]	if $b = 0$, then $c = a$ 0 is the identity element. if $b \neq 0$, then $c > a$, [sums will be greater]	if $b = 0$, then $c = a$ 0 is the identity element. if $b \neq 0$, if $b > 0$, then $c > a$ [sums will be greater] if $b < 0$, then $c < a$ [sums will be less] if $b = -a$, then $c = 0$ sums will be 0. [additive inverse]
MULTIPLICATION $a \cdot b = d$ a copies of $bgives you da$ and b can be any two numbers	if a > 1 , then d > b if a = 1 , then d = b 1 is the identity element.	<pre>if a = 0, then d = 0 if a > 1, then d > b if a = 1, then d = b 1 is the identity element</pre>	if $a = 0$, then $d = 0$ if $a > 1$, then $d > b$ if $a < 1$, then $d < b$ if $a = 1$, then $d = b$ 1 is the identity element. if $a = \frac{1}{b}$ then $d = 1$ [multiplicative inverse]	if $a = 0$, then $d = 0$ sign [positive or negative]: if $a > 0$, then d and b have the same sign if $a < 0$, then d and b have opposite signs absolute value [distance from 0]: if $ a > 1$, $ d > b $ products will be farther from 0 if $ a < 1$, $ d < b $ products will be closer to 0 if $ a = 1$, then $ d = b $ 1 is the identity element. if $ a = \frac{1}{ b }$ then $ d = 1$ [multiplicative inverse]
SUBTRACTION (from addition) c-a=b means b is the number so that $a+b=c$	Make sure $c > a$, then b will be the number added onto a that gives you c			For any numbers , a , b , and c , b will be the number added onto a that gives you c
DIVISION (from multiplication) $\frac{d}{a} = b$ means b is the number so that $a \cdot b = d$	<i>Make sure d is a multiple of a.</i> Then <i>b</i> will be the number such that <i>a</i> copies of <i>b</i> gives you <i>d.</i>	Make sure d is a multiple of a AND that $a \neq 0$. Then b will be the number such that a copies of b gives you d .	Make sure $a \neq 0$. Then d , a , and b can be any numbers—including fractions. (It is not necessary that d be an integer multiple of a .) b will still be the number such that a copies of b gives you d . (Since a , b , and d can all be fractions, " a copies of b gives you d " has to be appropriately interpreted for fractions.)	