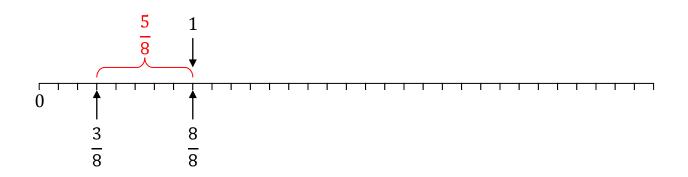
Multiplicative Inverse: Reciprocals

How does $\frac{3}{8}$ get to be 1? There is the old rhyme, "Ours is not to reason why: just invert and multiply." But in these pages we're going to take some time to discuss and picture the reasoning why.

Addition

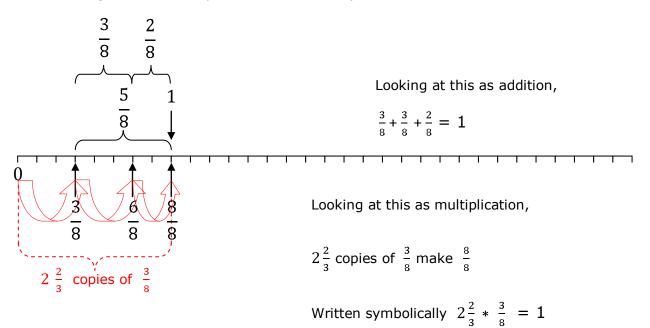
The simplest way to get $\frac{3}{8}$ to be 1 is by addition: just add $\frac{5}{8}$ more to $\frac{3}{8}$ and you get 1: On a number line, that looks something like this:



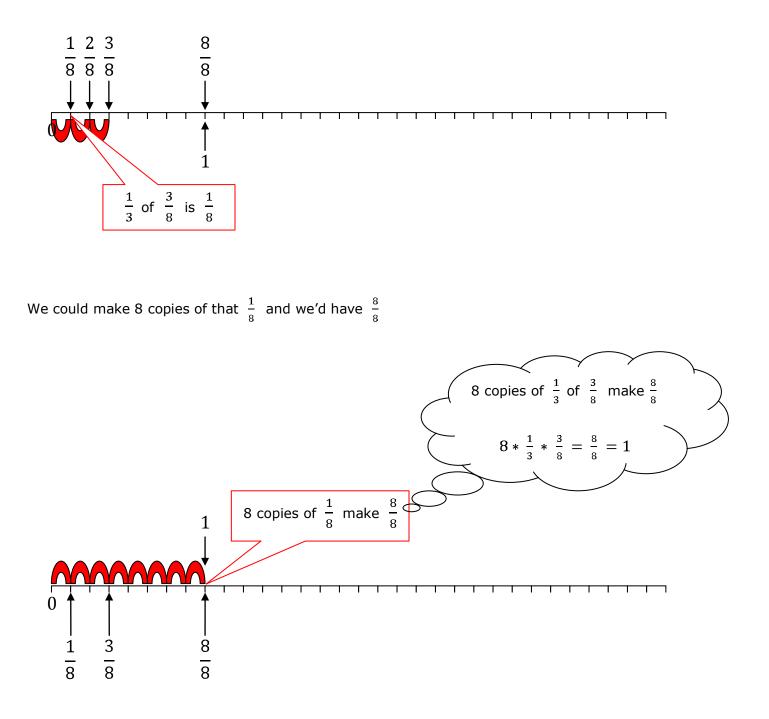
Moving from Addition to Multiplication

If we keep the $\frac{3}{8}$ in mind and think of things in terms of that length, then we'll see the $\frac{5}{8}$ as $\frac{3}{8}$ plus $\frac{2}{8}$

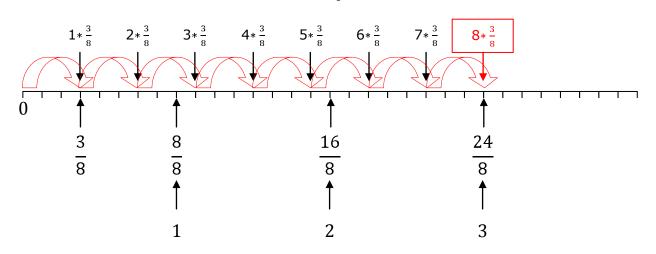
So we have 3 copies of $\frac{1}{8}$ plus another 3 copies of $\frac{1}{8}$ and then 2 copies of $\frac{1}{8}$ (This should start feeling a lot like multiplication—or division.)

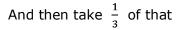


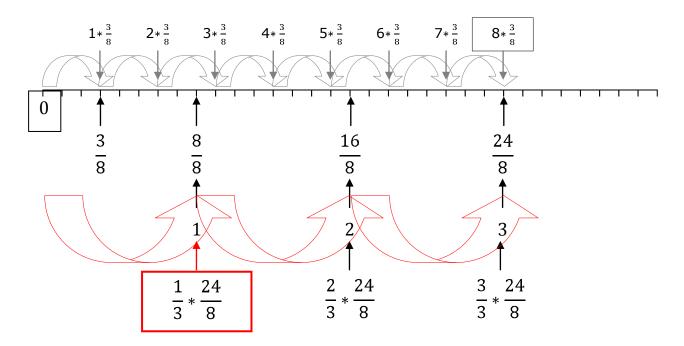
If we look again at the number line and recall our mission of transforming $\frac{3}{8}$ into 1, we could/should notice that we could divide $\frac{3}{8}$ into 3 equal pieces: then each one would equal $\frac{1}{8}$



One more way, of course, is to make 8 copies of $\frac{3}{8}$







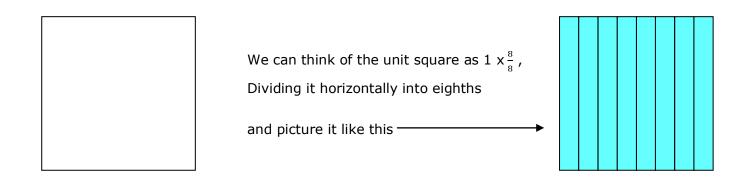
which will be 1, of course, since one-third of eight copies of three-eighths is one:

$$\frac{1}{3} * 8 * \frac{3}{8} = \frac{24}{24} = 1$$

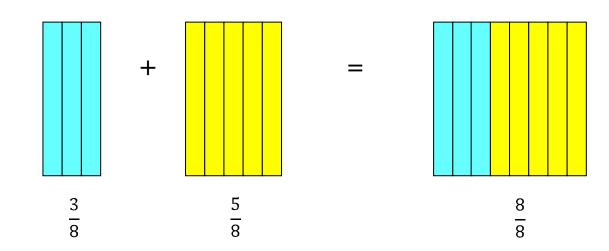
Invoking the Commutative Property and simplifying, we get $\frac{3}{8} * \frac{8}{3} = 1$

So multiplying $\frac{3}{8}$ by its reciprocal $\frac{8}{3}$ gives us 1. (It turns out that multiplying any number, $\frac{m}{n}$, for example, by its reciprocal, $\frac{n}{m}$, will give us 1, but we'll leave that demonstration for another paper.)

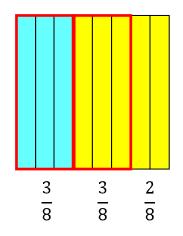
Instead of picturing this one-dimensionally, as length on a number line, we can picture this twodimensionally, as area. Let's think of 1 as a flat 1×1 unit square



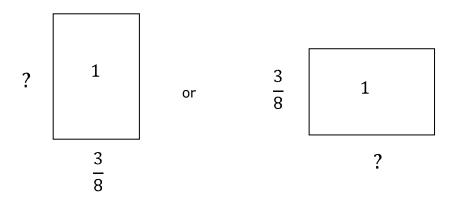
Then $\frac{3}{8} + \frac{5}{8} = 1$ will look something like this:



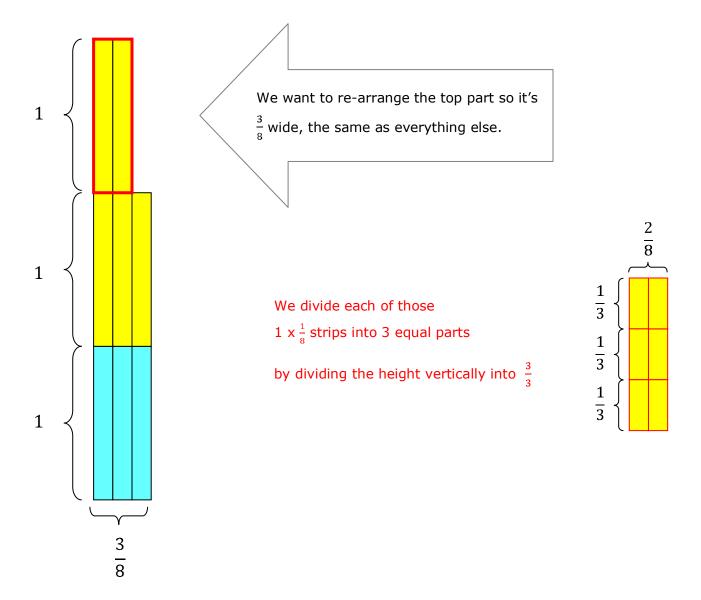
Since multiplication is an extension of addition, we ought to be able to re-arrange things a little and look at $\frac{3}{8}$ becoming 1 from a multiplication point of view. We can see the $\frac{3}{8}$ copies within the 1x1 unit square. (This should seem a lot like what we just did on the number line.)



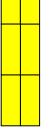
We know that $\frac{3}{8}$ times some number will equal 1. We can find out that number by re-arranging our 1 in terms of that $\frac{3}{8}$. Schematically, but not to scale, we have:



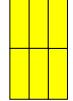
Let's get the $\frac{3}{8} + \frac{5}{8}$ which we know adds up to 1 and arrange the $\frac{1}{8}$ pieces in a stack that's $\frac{3}{8}$ wide:



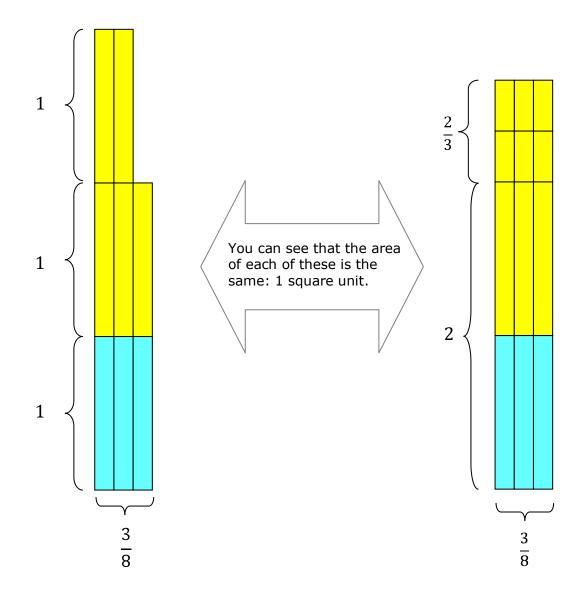
 $\frac{3}{3}$ of $\frac{2}{8}$ looks like this

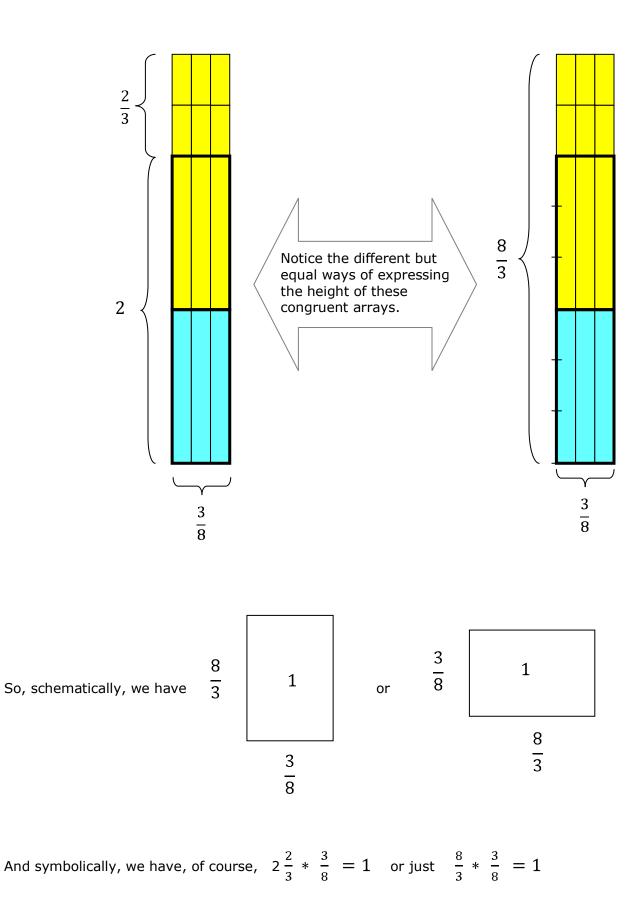


but we can re-arrange it like this:



We can distribute those 6 pieces across the top of our stack and have a rectangle:

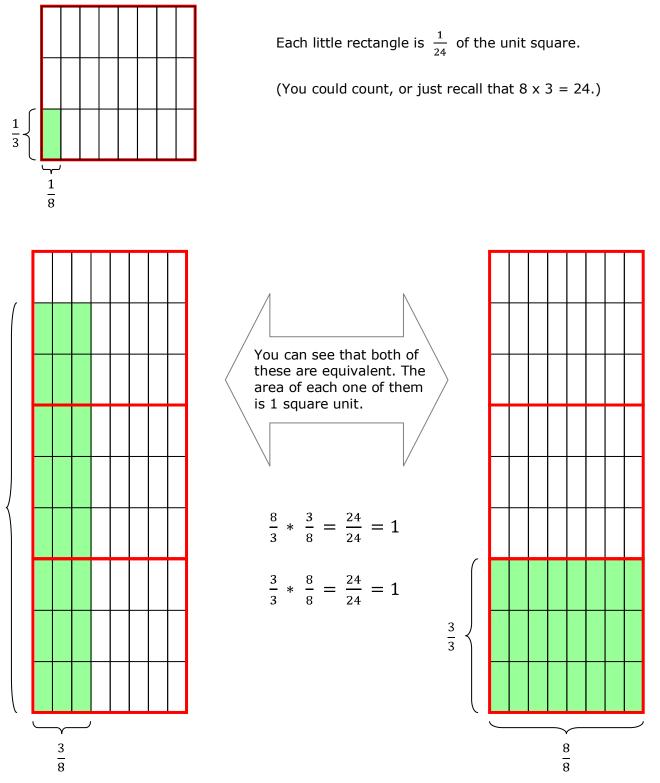




The invert-and-multiply algorithm that tells us we have to multiply $\frac{3}{8}$ by its reciprocal. When we multiply, we get $\frac{8}{3} * \frac{3}{8} = \frac{24}{24} = 1$. Let's take a look at our unit square to see where the 24ths come from.

If we divide the 1 unit height into thirds, we have a $\frac{3}{3} \times \frac{8}{8}$ unit square

 $\frac{8}{3}$



Conclusion

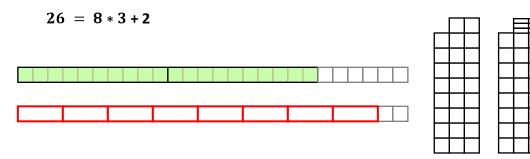
There are a few things that I'm hoping any reader would notice from the previous eight pages:

- 1. The number line model and the area model should remind you of each other in the way they look and the way they behave.
- 2. In the same way that **sums imply differences**, for example, once we say $\frac{3}{8} + \frac{5}{8} = 1$,

that implies $1 - \frac{3}{8} = \frac{5}{8}$ and $1 - \frac{5}{8} = \frac{3}{8}$, **products imply quotients**: the product statement $2\frac{2}{3} * \frac{3}{8} = 1$

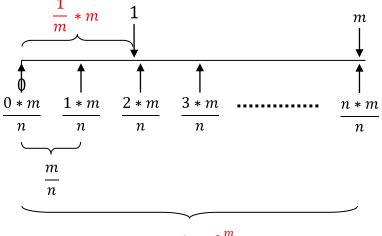
implies a division statement: $\frac{1}{\frac{3}{8}} = \frac{8}{3}$ and also $\frac{1}{\frac{8}{3}} = \frac{3}{8}$

3. The expression of the dividend (1, in this case) and stacking of $\frac{3}{8}$ pieces (the divisor) into rectangular arrays and then, if necessary, chopping up the leftovers, so they can be distributed across a full width, ought to remind everyone of **Division With Remainder**. Here's are some examples of Division With Remainder:

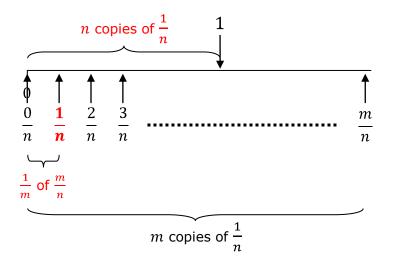


1	2	3
4	5	6
7	8	9
10	11	12
13	14	15
16	17	18
19	20	21
22	23	24
25	26	

- 4. Counting underlies all this: the way to work successfully with fractions is to get them to be whole numbers or have common denominators so they can be **counted**: when we have $\frac{3}{8}$ we try to get to $\frac{1}{8}$ so we can make 8 copies and get to 1, or, alternatively, when we have $\frac{3}{8}$ we multiply by 8 to get to 3 so then we can take $\frac{1}{3}$ of that and get to 1. Generally, if we have a fraction, $\frac{m}{n}$ (where m and n are whole numbers). We locate it on the number line: that defines a segment $[0, \frac{m}{n}]$. If we want to multiply it by some number and have the product equal 1,
 - a. we can make *n* copies of $\frac{m}{n}$ which will equal the segment
 - [0, m]. We can divide that segment into m equal pieces. Each piece will be 1 unit long.



b. or we can divide our fraction $\frac{m}{n}$ by the numerator, m, and get a segment of length $\frac{1}{n}$. We can make n copies of that segment. The sum of all those copies will equal 1.



- 5. **Unit length and unit area** can be pictured on the same number line: the **segment [0, 1]** is the unit of length AND the **1x1 square** is the unit of area.
- 6. And what's so important about reciprocals, anyway? Here are two specific applications and a general one:
 - a. When you're trying to solve an equation and you have a coefficient of x that's not 1, it's handy to know that if you multiply it by its reciprocal, you get 1.

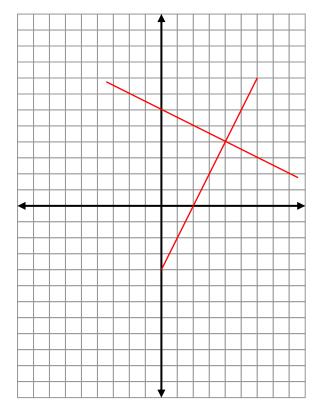
$$\frac{5}{4} x = 20$$
 [given]

$$\frac{4}{5} * \frac{5}{4} x = \frac{4}{5} * 20$$
 [equivalent fractions]

$$x = \frac{4}{5} * 5 * 4$$
 [inverse property]

$$x = \frac{5}{5} * 4 * 4$$
 [commutative property]

$$x = 16$$
 [identity property]



- b. When you want a line perpendicular to any given line, the slopes of the lines will be the negative reciprocals of each other.
- c. Reciprocals are where fractions, multiplication, division, and the commutative, identity, and inverse properties all meet.